The primary structure and analysis of the squid kinesin heavy chain.
نویسندگان
چکیده
We report the cDNA sequence of the squid kinesin heavy chain and compared the predicted amino acid sequence with that of the Drosophila heavy chain as reported by Yang, J.T., Laymon, R.A., and Goldstein, L.S. B. (1989) Cell 56, 879-889). We compared the two kinesin sequences with regard to the predicted physicochemical parameters of hydrophobicity, charge, and propensities of the secondary conformations. A comparison of the sequences from the two species reveals the head, stalk, and tail domains because a reduced degree of conservation demarcates the stalk. The charge profile indicates that the head region is nearly neutral, the stalk region acidic, and the tail is basic. The Fourier transform analysis of the hydrophobic profile of the stalk shows predominant peaks at 1/3.5 and 1/2.3, which are indexed as the second and third orders of the period 7 residue. As in the Drosophila sequence, the rod domain is divided into an amino and a carboxyl subdomain by a predicted hinge region. We show that the disposition of hydrophobic residues is distinct in these two subdomains. In particular, the heptad repeat is more regular in the amino-terminal rod domain than in the carboxyl-terminal rod domain. The tail region is positively charged, a feature that is consistent with the known electrostatic interaction between the heavy chain and negatively charged surfaces such as glass coverslips and latex beads. Three monoclonal antibodies to the kinesin heavy chain have been mapped to a region within the carboxyl terminus of the stalk.
منابع مشابه
A monoclonal antibody against kinesin inhibits both anterograde and retrograde fast axonal transport in squid axoplasm.
One of our monoclonal antibodies against the heavy chain of bovine kinesin (H2) also recognized the heavy chain of squid kinesin. The immunofluorescence pattern of H2 in axoplasm was similar to that seen in mammalian cells with antibodies specific for kinesin light and heavy chains, indicating that squid kinesin is also concentrated on membrane-bounded organelles. Although kinesin is assumed to...
متن کاملResistance of Cloned 1F5 Chimeric Anti-CD20 Antibody Heavy-Chain Gene to DNA Polymerase due to a Predicted Hairpin Structure
Background: Formation of secondary structure such as DNA hairpins or loops may influence molecular genetics methods and PCR based approaches necessary for genetic engineering, in addition to gene regulation. Materials and Methods: A polymerase chain reaction with splice overlap extension (SOE-PCR) was used to create fully synthetic 1F5 chimeric anti-CD20 heavy- and light-chain genes. The chi...
متن کاملMolecular genetics of kinesin light chains: generation of isoforms by alternative splicing.
Movement of membrane-bounded organelles to intracellular destinations requires properly oriented microtubules and force-generating enzymes, such as the microtubule-stimulated ATPase kinesin. Kinesin is a heterotetramer with two heavy chain (approximately 124-kDa) and two light chain (approximately 64-kDa) subunits. Kinesin heavy chains contain both ATP- and microtubule-binding domains and are c...
متن کاملLocalization of kinesin in cultured cells
Kinesin was isolated from bovine brain and used to elicit polyclonal antibodies in rabbits. The specificities of the resulting antibodies were evaluated by immunoblotting. Antibodies purified from these sera by their affinity for brain kinesin react with a polypeptide of approximately 120 kD in extracts from bovine brain, PtK1 cells, and mouse neuroblastoma cells. They bind to a pair of polypep...
متن کاملIsolation and characterization of the gene encoding the heavy chain of Drosophila kinesin.
An antiserum that recognizes the heavy chain of Drosophila kinesin was used to isolate Drosophila cDNA clones. Immunoblot analysis of the proteolytic fragments of the protein produced by one of the cDNA clones has demonstrated that the cDNA clones encode the heavy chain of Drosophila kinesin. The in vitro-synthesized product of the largest cDNA comigrates with Drosophila kinesin heavy chain on ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 265 6 شماره
صفحات -
تاریخ انتشار 1990